Oxidative Stress and Intracranial Hypertension after Aneurysmal Subarachnoid Hemorrhage (2024)

1. Johnston S.C., Selvin S., Gress D.R. The Burden, Trends, and Demographics of Mortality from Subarachnoid Hemorrhage. Neurology. 1998;50:1413–1418. doi:10.1212/WNL.50.5.1413. [PubMed] [CrossRef] [Google Scholar]

2. le Roux A.A., Wallace M.C. Outcome and Cost of Aneurysmal Subarachnoid Hemorrhage. Neurosurg. Clin. N. Am. 2010;21:235–246. doi:10.1016/j.nec.2009.10.014. [PubMed] [CrossRef] [Google Scholar]

3. Sehba F.A., Hou J., Pluta R.M., Zhang J.H. The Importance of Early Brain Injury after Subarachnoid Hemorrhage. Prog. Neurobiol. 2012;97:14–37. doi:10.1016/j.pneurobio.2012.02.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Ingelmo Ingelmo I., Fabregas Julia N., Rama-Maceiras P., Hernandez-Palazon J., Rubio Romero R., Carmona Aurioles J., Grupo Ad Hoc de la Seccion de Neurociencia de la Sociedad Espanola de Anestesiologia. Reanimación y Terapéutica del Dolor Subarachnoid Hemorrhage: Epidemiology, Social Impact and A Multidisciplinary Approach. Rev. Esp. Anestesiol. Reanim. 2010;57((Suppl. 2)):S4–S15. [PubMed] [Google Scholar]

5. van Gijn J., Rinkel G.J. Subarachnoid Haemorrhage: Diagnosis, Causes and Management. Brain. 2001;124:249–278. doi:10.1093/brain/124.2.249. [PubMed] [CrossRef] [Google Scholar]

6. Heuer G.G., Smith M.J., Elliott J.P., Winn H.R., LeRoux P.D. Relationship between Intracranial Pressure and Other Clinical Variables in Patients with Aneurysmal Subarachnoid Hemorrhage. J. Neurosurg. 2004;101:408–416. doi:10.3171/jns.2004.101.3.0408. [PubMed] [CrossRef] [Google Scholar]

7. Wu F., Liu Z., Li G., Zhou L., Huang K., Wu Z., Zhan R., Shen J. Inflammation and Oxidative Stress: Potential Targets for Improving Prognosis after Subarachnoid Hemorrhage. Front. Cell. Neurosci. 2021;15:739506. doi:10.3389/fncel.2021.739506. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Yang Y., Chen S., Zhang J.M. The Updated Role of Oxidative Stress in Subarachnoid Hemorrhage. Curr. Drug Deliv. 2017;14:832–842. doi:10.2174/1567201813666161025115531. [PubMed] [CrossRef] [Google Scholar]

9. Lin F., Li R., Tu W.J., Chen Y., Wang K., Chen X., Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury after Subarachnoid Hemorrhage. Front. Aging Neurosci. 2021;13:772036. doi:10.3389/fnagi.2021.772036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Warren M.C., Bump E.A., Medeiros D., Braunhut S.J. Oxidative Stress-Induced Apoptosis of Endothelial Cells. Free Radic. Biol. Med. 2000;29:537–547. doi:10.1016/S0891-5849(00)00353-1. [PubMed] [CrossRef] [Google Scholar]

11. Qing W.G., Dong Y.Q., Ping T.Q., Lai L.G., Fang L.D., Min H.W., Xia L., Heng P.Y. Brain Edema after Intracerebral Hemorrhage in Rats: The Role of Iron Overload and Aquaporin 4. J. Neurosurg. 2009;110:462–468. doi:10.3171/2008.4.JNS17512. [PubMed] [CrossRef] [Google Scholar]

12. Fumoto T., Naraoka M., Katagai T., Li Y., Shimamura N., Ohkuma H. The Role of Oxidative Stress in Microvascular Disturbances after Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 2019;10:684–694. doi:10.1007/s12975-018-0685-0. [PubMed] [CrossRef] [Google Scholar]

13. Schenck H., Netti E., Teernstra O., De Ridder I., Dings J., Niemela M., Temel Y., Hoogland G., Haeren R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front. Cell. Dev. Biol. 2021;9:731641. doi:10.3389/fcell.2021.731641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Mokri B. The Monro-Kellie Hypothesis: Applications in CSF Volume Depletion. Neurology. 2001;56:1746–1748. doi:10.1212/WNL.56.12.1746. [PubMed] [CrossRef] [Google Scholar]

15. Nornes H. The Role of Intracranial Pressure in The Arrest of Hemorrhage in Patients with Ruptured Intracranial Aneurysm. J. Neurosurg. 1973;39:226–234. doi:10.3171/jns.1973.39.2.0226. [PubMed] [CrossRef] [Google Scholar]

16. Keep R.F., Andjelkovic A.V., Stamatovic S.M., Shakui P., Ennis S.R. Ischemia-Induced Endothelial Cell Dysfunction. Acta Neurochir. Suppl. 2005;95:399–402. doi:10.1007/3-211-32318-x_81. [PubMed] [CrossRef] [Google Scholar]

17. Sabri M., Lass E., Macdonald R.L. Early Brain Injury: A Common Mechanism in Subarachnoid Hemorrhage and Global Cerebral Ischemia. Stroke Res. Treat. 2013;2013:394036. doi:10.1155/2013/394036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Brinker T., Seifert V., Stolke D. Acute Changes in The Dynamics of The Cerebrospinal Fluid System during Experimental Subarachnoid Hemorrhage. Neurosurgery. 1990;27:369–372. doi:10.1227/00006123-199009000-00005. [PubMed] [CrossRef] [Google Scholar]

19. Grote E., Hassler W. The Critical First Minutes after Subarachnoid Hemorrhage. Neurosurgery. 1988;22:654–661. doi:10.1227/00006123-198804000-00006. [PubMed] [CrossRef] [Google Scholar]

20. Furuichi S., Endo S., Haji A., Takeda R., Nisijima M., Takaku A. Related Changes in Sympathetic Activity, Cerebral Blood Flow and Intracranial Pressure, and Effect of an Alpha-blocker in Experimental Subarachnoid Haemorrhage. Acta Neurochir. 1999;141:415–423. doi:10.1007/s007010050318. discussion 414–423. [PubMed] [CrossRef] [Google Scholar]

21. Westermaier T., Jauss A., Eriskat J., Kunze E., Roosen K. Acute Vasoconstriction: Decrease and Recovery of Cerebral Blood Flow after Various Intensities of Experimental Subarachnoid Hemorrhage in Rats. J. Neurosurg. 2009;110:996–1002. doi:10.3171/2008.8.JNS08591. [PubMed] [CrossRef] [Google Scholar]

22. Graetz D., Nagel A., Schlenk F., Sakowitz O., Vajkoczy P., Sarrafzadeh A. High ICP as Trigger of Proinflammatory IL-6 Cytokine Activation in Aneurysmal Subarachnoid Hemorrhage. Neurol. Res. 2010;32:728–735. doi:10.1179/016164109X12464612122650. [PubMed] [CrossRef] [Google Scholar]

23. Makino K., Osuka K., Watanabe Y., Usuda N., Hara M., Aoyama M., Takayasu M., Wakabayashi T. Increased ICP Promotes CaMKII-Mediated Phosphorylation of Neuronal NOS at Ser(8)(4)(7) in The Hippocampus Immediately after Subarachnoid Hemorrhage. Brain Res. 2015;1616:19–25. doi:10.1016/j.brainres.2015.04.048. [PubMed] [CrossRef] [Google Scholar]

24. Trojanowski T. Early Effects of Experimental Arterial Subarachnoid Haemorrhage on The Cerebral Circulation. Part I: Experimental Subarachnoid Haemorrhage in Cat and Its Pathophysiological Effects. Methods of Regional Cerebral Blood Flow Measurement and Evaluation of Microcirculation. Acta Neurochir. 1984;72:79–94. doi:10.1007/BF01406816. [PubMed] [CrossRef] [Google Scholar]

25. Caner B., Hou J., Altay O., Fujii M., Zhang J.H. Transition of Research Focus from Vasospasm to Early Brain Injury after Subarachnoid Hemorrhage. J. Neurochem. 2012;123((Suppl. 2)):12–21. doi:10.1111/j.1471-4159.2012.07939.x. [PubMed] [CrossRef] [Google Scholar]

26. Shimizu T., Hishikawa T., Nishihiro S., Shinji Y., Takasugi Y., Haruma J., Hiramatsu M., Kawase H., Sato S., Mizoue R., et al. NADH Fluorescence Imaging and The Histological Impact of Cortical Spreading Depolarization during the Acute Phase of Subarachnoid Hemorrhage in Rats. J. Neurosurg. 2018;128:137–143. doi:10.3171/2016.9.JNS161385. [PubMed] [CrossRef] [Google Scholar]

27. Lu J., Chen F., Cai B., Chen F., Kang D. A Rabbit Model of Aneurysmal Subarachnoid Hemorrhage by Ear Central Artery-Suprasellar Cistern Shunt. J. Clin. Neurosci. 2017;44:300–305. doi:10.1016/j.jocn.2017.05.031. [PubMed] [CrossRef] [Google Scholar]

28. Friedrich V., Bederson J.B., Sehba F.A. Gender Influences the Initial Impact of Subarachnoid Hemorrhage: An Experimental Investigation. PLoS ONE. 2013;8:e80101. doi:10.1371/journal.pone.0080101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Lv Y., Wang D., Lei J., Tan G. Clinical Observation of the Time Course of Raised Intracranial Pressure after Subarachnoid Hemorrhage. Neurol. Sci. 2015;36:1203–1210. doi:10.1007/s10072-015-2073-9. [PubMed] [CrossRef] [Google Scholar]

30. Macdonald R.L., Schweizer T.A. Spontaneous Subarachnoid Haemorrhage. Lancet. 2017;389:655–666. doi:10.1016/S0140-6736(16)30668-7. [PubMed] [CrossRef] [Google Scholar]

31. Altay O., Suzuki H., Hasegawa Y., Caner B., Krafft P.R., Fujii M., Tang J., Zhang J.H. Isoflurane Attenuates Blood-Brain Barrier Disruption in Ipsilateral Hemisphere after Subarachnoid Hemorrhage in Mice. Stroke. 2012;43:2513–2516. doi:10.1161/STROKEAHA.112.661728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Ahn S.H., Savarraj J.P., Pervez M., Jones W., Park J., Jeon S.B., Kwon S.U., Chang T.R., Lee K., Kim D.H., et al. The Subarachnoid Hemorrhage Early Brain Edema Score Predicts Delayed Cerebral Ischemia and Clinical Outcomes. Neurosurgery. 2018;83:137–145. doi:10.1093/neuros/nyx364. [PubMed] [CrossRef] [Google Scholar]

33. Kamiya K., Kuyama H., Symon L. An Experimental Study of the Acute Stage of subarachnoid hemorrhage. J. Neurosurg. 1983;59:917–924. doi:10.3171/jns.1983.59.6.0917. [PubMed] [CrossRef] [Google Scholar]

34. Robba C., Graziano F., Rebora P., Elli F., Giussani C., Oddo M., Meyfroidt G., Helbok R., Taccone F.S., Prisco L., et al. Intracranial Pressure Monitoring in Patients with Acute Brain Injury in the Intensive Care Unit (SYNAPSE-ICU): An International, Prospective Observational Cohort Study. Lancet Neurol. 2021;20:548–558. doi:10.1016/S1474-4422(21)00138-1. [PubMed] [CrossRef] [Google Scholar]

35. Zoerle T., Lombardo A., Colombo A., Longhi L., Zanier E.R., Rampini P., Stocchetti N. Intracranial Pressure after Subarachnoid Hemorrhage. Crit. Care Med. 2015;43:168–176. doi:10.1097/CCM.0000000000000670. [PubMed] [CrossRef] [Google Scholar]

36. Cossu G., Messerer M., Stocchetti N., Levivier M., Daniel R.T., Oddo M. Intracranial Pressure and Outcome in Critically Ill Patients with Aneurysmal Subarachnoid Hemorrhage: A Systematic Review. Minerva Anestesiol. 2016;82:684–696. [PubMed] [Google Scholar]

37. Magni F., Pozzi M., Rota M., Vargiolu A., Citerio G. High-Resolution Intracranial Pressure Burden and Outcome in Subarachnoid Hemorrhage. Stroke. 2015;46:2464–2469. doi:10.1161/STROKEAHA.115.010219. [PubMed] [CrossRef] [Google Scholar]

38. Carra G., Elli F., Ianosi B., Flechet M., Huber L., Rass V., Depreitere B., Guiza F., Meyfroidt G., Citerio G., et al. Association of Dose of Intracranial Hypertension with Outcome in Subarachnoid Hemorrhage. Neurocrit Care. 2021;34:722–730. doi:10.1007/s12028-021-01221-4. [PubMed] [CrossRef] [Google Scholar]

39. Ayer R.E., Zhang J.H. Oxidative Stress in Subarachnoid Haemorrhage: Significance in Acute Brain Injury and Vasospasm. Acta Neurochir. Suppl. 2008;104:33–41. doi:10.1007/978-3-211-75718-5_7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Sehba F.A., Pluta R.M., Zhang J.H. Metamorphosis of Subarachnoid Hemorrhage Research: From Delayed Vasospasm to Early Brain Injury. Mol. Neurobiol. 2011;43:27–40. doi:10.1007/s12035-010-8155-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Blackburn S.L., Kumar P.T., McBride D., Zeineddine H.A., Leclerc J., Choi H.A., Dash P.K., Grotta J., Aronowski J., Cardenas J.C., et al. Unique Contribution of Haptoglobin and Haptoglobin Genotype in Aneurysmal Subarachnoid Hemorrhage. Front. Physiol. 2018;9:592. doi:10.3389/fphys.2018.00592. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Che M., Wang R., Li X., Wang H.Y., Zheng X.F.S. Expanding Roles of Superoxide Dismutases in Cell Regulation and Cancer. Drug Discov Today. 2016;21:143–149. doi:10.1016/j.drudis.2015.10.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Jung C.H., Kim E.M., Song J.Y., Park J.K., Um H.D. Mitochondrial Superoxide dismutase 2 Mediates Gamma-Irradiation-Induced Cancer Cell Invasion. Exp. Mol. Med. 2019;51:1–10. doi:10.1038/s12276-019-0207-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Papay F.A., Levine H.L., Schiavone W.A. Facial Fuzz and Funny Findings. Facial Hair Causing Otalgia and Oropharyngeal pain. Cleve Clin J Med. 1989;56:273–276. doi:10.3949/ccjm.56.3.273. [PubMed] [CrossRef] [Google Scholar]

45. Marzatico F., Gaetani P., Silvani V., Lombardi D., Sinforiani E., Rodriguez y Baena R. Experimental Isobaric Subarachnoid Hemorrhage: Regional Mitochondrial Function during the Acute and Late Phase. Surg. Neurol. 1990;34:294–300. doi:10.1016/0090-3019(90)90004-9. [PubMed] [CrossRef] [Google Scholar]

46. Rodriguez y Baena R., Gaetani P., Silvani V., Spanu G., Marzatico F. Effect of Nimodipine on Mitochondrial Respiration in Different Rat Brain Areas after Subarachnoid Haemorrhage. Acta Neurochir. Suppl. 1988;43:177–181. doi:10.1007/978-3-7091-8978-8_38. [PubMed] [CrossRef] [Google Scholar]

47. Moro M.A., Almeida A., Bolanos J.P., Lizasoain I. Mitochondrial Respiratory Chain and Free Radical Generation in stroke. Free Radic. Biol. Med. 2005;39:1291–1304. doi:10.1016/j.freeradbiomed.2005.07.010. [PubMed] [CrossRef] [Google Scholar]

48. Cobley J.N. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing. Antioxidants. 2020;9:933. doi:10.3390/antiox9100933. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Ma M.W., Wang J., Zhang Q., Wang R., Dhandapani K.M., Vadlamudi R.K., Brann D.W. NADPH Oxidase in Brain Injury and Neurodegenerative Disorders. Mol. Neurodegener. 2017;12:7. doi:10.1186/s13024-017-0150-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Cantu-Medellin N., Kelley E.E. Xanthine Oxidoreductase-Catalyzed Reactive Species Generation: A Process in Critical Need of Reevaluation. Redox Biol. 2013;1:353–358. doi:10.1016/j.redox.2013.05.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Hou L., Zhang L., Hong J.S., Zhang D., Zhao J., Wang Q. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxid. Redox Signal. 2020;33:374–393. doi:10.1089/ars.2019.8014. [PubMed] [CrossRef] [Google Scholar]

52. Chu Y., Wilson K., Gu H., Wegman-Points L., Dooley S.A., Pierce G.L., Cheng G., Pena Silva R.A., Heistad D.D., Hasan D. Myeloperoxidase is Increased in Human Cerebral Aneurysms and Increases Formation and Rupture of Cerebral Aneurysms in Mice. Stroke. 2015;46:1651–1656. doi:10.1161/STROKEAHA.114.008589. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Cooney S.J., Bermudez-Sabogal S.L., Byrnes K.R. Cellular and Temporal Expression of NADPH Oxidase (NOX) Isotypes after Brain Injury. J. Neuroinflammation. 2013;10:155. doi:10.1186/1742-2094-10-155. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Sorce S., Krause K.H. NOX Enzymes in the Central Nervous System: From Signaling to Disease. Antioxid. Redox Signal. 2009;11:2481–2504. doi:10.1089/ars.2009.2578. [PubMed] [CrossRef] [Google Scholar]

55. Zhang L., Li Z., Feng D., Shen H., Tian X., Li H., Wang Z., Chen G. Involvement of Nox2 and Nox4 NADPH Oxidases in Early Brain Injury after Subarachnoid Hemorrhage. Free Radic. Res. 2017;51:316–328. doi:10.1080/10715762.2017.1311015. [PubMed] [CrossRef] [Google Scholar]

56. Kim D.E., Suh Y.S., Lee M.S., Kim K.Y., Lee J.H., Lee H.S., Hong K.W., Kim C.D. Vascular NAD(P)H Oxidase Triggers Delayed Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats. Stroke. 2002;33:2687–2691. doi:10.1161/01.STR.0000033071.99143.9E. [PubMed] [CrossRef] [Google Scholar]

57. Choi D.K., Pennathur S., Perier C., Tieu K., Teismann P., Wu D.C., Jackson-Lewis V., Vila M., Vonsattel J.P., Heinecke J.W., et al. Ablation of The Inflammatory Enzyme Myeloperoxidase Mitigates Features of Parkinson’s Disease in Mice. J. Neurosci. 2005;25:6594–6600. doi:10.1523/JNEUROSCI.0970-05.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Green P.S., Mendez A.J., Jacob J.S., Crowley J.R., Growdon W., Hyman B.T., Heinecke J.W. Neuronal Expression of Myeloperoxidase is Increased in Alzheimer’s Disease. J. Neurochem. 2004;90:724–733. doi:10.1111/j.1471-4159.2004.02527.x. [PubMed] [CrossRef] [Google Scholar]

59. Nagra R.M., Becher B., Tourtellotte W.W., Antel J.P., Gold D., Paladino T., Smith R.A., Nelson J.R., Reynolds W.F. Immunohistochemical and Genetic Evidence of Myeloperoxidase Involvement in Multiple Sclerosis. J. Neuroimmunol. 1997;78:97–107. doi:10.1016/S0165-5728(97)00089-1. [PubMed] [CrossRef] [Google Scholar]

60. Chen Z.Q., Mou R.T., Feng D.X., Wang Z., Chen G. The Role of Nitric Oxide in stroke. Med. Gas Res. 2017;7:194–203. doi:10.4103/2045-9912.215750. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Khey K.M.W., Huard A., Mahmoud S.H. Inflammatory Pathways Following Subarachnoid Hemorrhage. Cell. Mol. Neurobiol. 2020;40:675–693. doi:10.1007/s10571-019-00767-4. [PubMed] [CrossRef] [Google Scholar]

62. Lenz I.J., Plesnila N., Terpolilli N.A. Role of Endothelial Nitric Oxide Synthase for Early Brain Injury after Subarachnoid Hemorrhage in Mice. J. Cereb. Blood Flow Metab. 2021;41:1669–1681. doi:10.1177/0271678X20973787. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Sehba F.A., Bederson J.B. Nitric Oxide in Early Brain Injury after Subarachnoid Hemorrhage. Acta Neurochir. Suppl. 2011;110:99–103. doi:10.1007/978-3-7091-0353-1_18. [PubMed] [CrossRef] [Google Scholar]

64. Wang Z., Chen G., Zhu W.W., Zhou D. Activation of Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) in the Basilar Artery after Subarachnoid Hemorrhage in Rats. Ann. Clin. Lab. Sci. 2010;40:233–239. [PubMed] [Google Scholar]

65. Zolnourian A., Galea I., Bulters D. Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. Oxidative Med. Cell. Longev. 2019;2019:6218239. doi:10.1155/2019/6218239. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Antognelli C., Trapani E., Delle Monache S., Perrelli A., Daga M., Pizzimenti S., Barrera G., Cassoni P., Angelucci A., Trabalzini L., et al. KRIT1 Loss-of-Function Induces A Chronic Nrf2-Mediated Adaptive Homeostasis That Sensitizes Cells to Oxidative Stress: Implication for Cerebral Cavernous Malformation disease. Free Radic. Biol. Med. 2018;115:202–218. doi:10.1016/j.freeradbiomed.2017.11.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Harada N., Kanayama M., Maruyama A., Yoshida A., Tazumi K., Hosoya T., Mimura J., Toki T., Maher J.M., Yamamoto M., et al. Nrf2 Regulates Ferroportin 1-Mediated Iron Efflux and Counteracts Lipopolysaccharide-Induced Ferroportin 1 mRNA Suppression in Macrophages. Arch. Biochem. Biophys. 2011;508:101–109. doi:10.1016/j.abb.2011.02.001. [PubMed] [CrossRef] [Google Scholar]

68. Chen M., Regan R.F. Time Course of Increased Heme Oxygenase Activity and Expression after Experimental Intracerebral Hemorrhage: Correlation with Oxidative Injury. J. Neurochem. 2007;103:2015–2021. doi:10.1111/j.1471-4159.2007.04885.x. [PubMed] [CrossRef] [Google Scholar]

69. Morris C.M., Candy J.M., Edwardson J.A., Bloxham C.A., Smith A. Evidence For the Localization of Haemopexin Immunoreactivity in Neurones in the Human Brain. Neurosci. Lett. 1993;149:141–144. doi:10.1016/0304-3940(93)90756-B. [PubMed] [CrossRef] [Google Scholar]

70. Zhao X., Song S., Sun G., Strong R., Zhang J., Grotta J.C., Aronowski J. Neuroprotective Role of Haptoglobin after Intracerebral Hemorrhage. J. Neurosci. 2009;29:15819–15827. doi:10.1523/JNEUROSCI.3776-09.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Jeyapaul J., Jaiswal A.K. Nrf2 and c-Jun Regulation of Antioxidant Response Element (ARE)-Mediated Expression and Induction of Gamma-Glutamylcysteine Synthetase Heavy Subunit Gene. Biochem. Pharmacol. 2000;59:1433–1439. doi:10.1016/S0006-2952(00)00256-2. [PubMed] [CrossRef] [Google Scholar]

72. Ling G.Q., Li X.F., Lei X.H., Wang Z.Y., Ma D.Y., Wang Y.N., Ye W. c-Jun N-terminal Kinase Inhibition Attenuates Early Brain Injury Induced Neuronal Apoptosis via Decreasing p53 Phosphorylation and Mitochondrial Apoptotic Pathway Activation in Subarachnoid Hemorrhage Rats. Mol. Med. Rep. 2019;19:327–337. doi:10.3892/mmr.2018.9640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Yatsushige H., Ostrowski R.P., Tsubokawa T., Colohan A., Zhang J.H. Role of c-Jun N-Terminal Kinase in Early Brain Injury after Subarachnoid Hemorrhage. J. Neurosci. Res. 2007;85:1436–1448. doi:10.1002/jnr.21281. [PubMed] [CrossRef] [Google Scholar]

74. Huang M.L., Chiang S., Kalinowski D.S., Bae D.H., Sahni S., Richardson D.R. The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxidative Med. Cell. Longev. 2019;2019:6392763. doi:10.1155/2019/6392763. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Zhang T., Wu P., Budbazar E., Zhu Q., Sun C., Mo J., Peng J., Gospodarev V., Tang J., Shi H., et al. Mitophagy Reduces Oxidative Stress Via Keap1 (Kelch-Like Epichlorohydrin-Associated Protein 1)/Nrf2 (Nuclear Factor-E2-Related Factor 2)/PHB2 (Prohibitin 2) Pathway after Subarachnoid Hemorrhage in Rats. Stroke. 2019;50:978–988. doi:10.1161/STROKEAHA.118.021590. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Link T.E., Murakami K., Beem-Miller M., Tranmer B.I., Wellman G.C. Oxyhemoglobin-Induced Expression of R-type Ca2+ Channels in Cerebral Arteries. Stroke. 2008;39:2122–2128. doi:10.1161/STROKEAHA.107.508754. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Ishiguro M., Morielli A.D., Zvarova K., Tranmer B.I., Penar P.L., Wellman G.C. Oxyhemoglobin-Induced Suppression of Voltage-Dependent K+ Channels in Cerebral Arteries by Enhanced Tyrosine Kinase Activity. Circ. Res. 2006;99:1252–1260. doi:10.1161/01.RES.0000250821.32324.e1. [PubMed] [CrossRef] [Google Scholar]

78. Sabri M., Ai J., Knight B., Tariq A., Jeon H., Shang X., Marsden P.A., Loch Macdonald R. Uncoupling of Endothelial Nitric Oxide Synthase after Experimental Subarachnoid Hemorrhage. J. Cereb. Blood Flow Metab. 2011;31:190–199. doi:10.1038/jcbfm.2010.76. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Rangel-Castilla L., Gopinath S., Robertson C.S. Management of Intracranial Hypertension. Neurol. Clin. 2008;26:521–541. doi:10.1016/j.ncl.2008.02.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Mak C.H., Lu Y.Y., Wong G.K. Review and Recommendations on Management of Refractory Raised Intracranial Pressure in Aneurysmal Subarachnoid Hemorrhage. Vasc. Health Risk Manag. 2013;9:353–359. doi:10.2147/VHRM.S34046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Carney N., Totten A.M., O’Reilly C., Ullman J.S., Hawryluk G.W., Bell M.J., Bratton S.L., Chesnut R., Harris O.A., Kissoon N., et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery. 2017;80:6–15. doi:10.1227/NEU.0000000000001432. [PubMed] [CrossRef] [Google Scholar]

82. Alotaibi N.M., Wang J.Z., Pasarikovski C.R., Guha D., Al-Mufti F., Mamdani M., Saposnik G., Schweizer T.A., Macdonald R.L. Management of Raised Intracranial Pressure in Aneurysmal Subarachnoid Hemorrhage: Time for a consensus? Neurosurg. Focus. 2017;43:E13. doi:10.3171/2017.7.FOCUS17426. [PubMed] [CrossRef] [Google Scholar]

83. Steiner T., Juvela S., Unterberg A., Jung C., Forsting M., Rinkel G., European Stroke O. European Stroke Organization Guidelines for the Management of Intracranial Aneurysms and Subarachnoid Haemorrhage. Cerebrovasc Dis. 2013;35:93–112. doi:10.1159/000346087. [PubMed] [CrossRef] [Google Scholar]

84. Connolly E.S., Jr., Rabinstein A.A., Carhuapoma J.R., Derdeyn C.P., Dion J., Higashida R.T., Hoh B.L., Kirkness C.J., Naidech A.M., Ogilvy C.S., et al. Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/american Stroke Association. Stroke. 2012;43:1711–1737. doi:10.1161/STR.0b013e3182587839. [PubMed] [CrossRef] [Google Scholar]

85. Li H., Wang W. Evaluation of the Effectiveness of Lumbar Punctures in Aneurysmal Subarachnoid Hemorrhage Patient with External Ventricular Drainage. World Neurosurg. 2021;151:e1–e9. doi:10.1016/j.wneu.2021.02.025. [PubMed] [CrossRef] [Google Scholar]

86. Konovalov A., Shekhtman O., Pilipenko Y., Okishev D., Ershova O., Oshorov A., Abramyan A., Kurzakova I., Eliava S. External Ventricular Drainage in Patients with Acute Aneurysmal Subarachnoid Hemorrhage after Microsurgical Clipping: Our 2006–2018 Experience and a Literature Review. Cureus. 2021;13:e12951. doi:10.7759/cureus.12951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Duan F., Wang G., Ma X., Zhao Y., Xu X., Dong F. A Controlled Study of Continuous Lumbar Drainage of Fluid and Lumbar Puncture Drainage for Aneurysmal SAH after Intracranial Aneurysm Clipping. J. Healthcare Eng. 2021;2021:2827493. doi:10.1155/2021/2827493. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Retracted

88. Wang A.Y., Hsieh P.C., Chen C.C., Chin S.C., Wu Y.M., Chen C.T., Chang C.H., Wu T.E. Effect of Intracranial Pressure Control on Improvement of Cerebral Perfusion after Acute Subarachnoid Hemorrhage: A Comparative Angiography Study Based on Temporal Changes of Intracranial Pressure and Systemic Pressure. World Neurosurg. 2018;120:e290–e296. doi:10.1016/j.wneu.2018.08.053. [PubMed] [CrossRef] [Google Scholar]

89. van Lieshout J.H., Pumplun I., Fischer I., Kamp M.A., Cornelius J.F., Steiger H.J., Boogaarts H.D., Petridis A.K., Beseoglu K. Volume of Cerebrospinal Fluid Drainage as a Predictor for Pretreatment Aneurysmal Rebleeding. J. Neurosurg. 2018;128:1778–1784. doi:10.3171/2017.2.JNS162748. [PubMed] [CrossRef] [Google Scholar]

90. Olson D.M., Zomorodi M., Britz G.W., Zomorodi A.R., Amato A., Graffa*gnino C. Continuous Cerebral Spinal Fluid Drainage Associated with Complications in Patients Admitted with Subarachnoid Hemorrhage. J. Neurosurg. 2013;119:974–980. doi:10.3171/2013.6.JNS122403. [PubMed] [CrossRef] [Google Scholar]

91. Cagnazzo F., Chalard K., Lefevre P.H., Garnier O., Derraz I., Dargazanli C., Gascou G., Riquelme C., Bonafe A., Perrini P., et al. Optimal Intracranial Pressure in Patients with Aneurysmal Subarachnoid Hemorrhage Treated with Coiling and Requiring External Ventricular Drainage. Neurosurg. Rev. 2021;44:1191–1204. doi:10.1007/s10143-020-01322-2. [PubMed] [CrossRef] [Google Scholar]

92. Ozeki T., Kubota A., Murai Y., Morita A. A Case of Suspected Low-Pressure Hydrocephalus Caused by Spinal Drainage Following Subarachnoid Hemorrhage. J. Nippon. Med. Sch. 2021;89:238–243. doi:10.1272/jnms.JNMS.2022_89-209. [PubMed] [CrossRef] [Google Scholar]

93. Linsler S., Schmidtke M., Steudel W.I., Kiefer M., Oertel J. Automated Intracranial Pressure-Controlled Cerebrospinal Fluid External Drainage with LiquoGuard. Acta Neurochir. 2013;155:1589–1594. doi:10.1007/s00701-012-1562-3. discussion 1585–1594. [PubMed] [CrossRef] [Google Scholar]

94. Al-Tamimi Y.Z., Bhargava D., Feltbower R.G., Hall G., Goddard A.J., Quinn A.C., Ross S.A. Lumbar Drainage of Cerebrospinal Fluid after Aneurysmal Subarachnoid Hemorrhage: A Prospective, Randomized, Controlled trial (LUMAS) Stroke. 2012;43:677–682. doi:10.1161/STROKEAHA.111.625731. [PubMed] [CrossRef] [Google Scholar]

95. Xiong Y., Xin D.Q., Hu Q., Wang L.X., Qiu J., Yuan H.T., Chu X.L., Liu D.X., Li G., Wang Z. Neuroprotective Mechanism of L-cysteine after Subarachnoid Hemorrhage. Neural Regen. Res. 2020;15:1920–1930. doi:10.4103/1673-5374.280321. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Wu Q., Zhang X.S., Wang H.D., Zhang X., Yu Q., Li W., Zhou M.L., Wang X.L. Astaxanthin Activates Nuclear Factor Erythroid-related Factor 2 and the Antioxidant Responsive Element (Nrf2-ARE) Pathway in the Brain after Subarachnoid Hemorrhage in Rats and Attenuates Early Brain Injury. Mar. Drugs. 2014;12:6125–6141. doi:10.3390/md12126125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Liu Y., Qiu J., Wang Z., You W., Wu L., Ji C., Chen G. Dimethylfumarate Alleviates Early Brain Injury and Secondary Cognitive Deficits after Experimental Subarachnoid Hemorrhage via Activation of Keap1-Nrf2-ARE System. J. Neurosurg. 2015;123:915–923. doi:10.3171/2014.11.JNS132348. [PubMed] [CrossRef] [Google Scholar]

98. Wang Z., Guo S., Wang J., Shen Y., Zhang J., Wu Q. Nrf2/HO-1 Mediates the Neuroprotective Effect of Mangiferin on Early Brain Injury after Subarachnoid Hemorrhage by Attenuating Mitochondria-Related Apoptosis and Neuroinflammation. Sci. Rep. 2017;7:11883. doi:10.1038/s41598-017-12160-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Song S., Chen Y., Han F., Dong M., Xiang X., Sui J., Li Y., Yang H., Liu J. Aloperine Activates the Nrf2-ARE Pathway When Ameliorating Early Brain Injury in A Subarachnoid Hemorrhage Model. Exp. Ther. Med. 2018;15:3847–3855. doi:10.3892/etm.2018.5896. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Zhang X., Wu Q., Lu Y., Wan J., Dai H., Zhou X., Lv S., Chen X., Zhang X., Hang C., et al. Cerebroprotection by Salvianolic Acid B after Experimental Subarachnoid Hemorrhage Occurs via Nrf2- and SIRT1-Dependent Pathways. Free Radic. Biol. Med. 2018;124:504–516. doi:10.1016/j.freeradbiomed.2018.06.035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Wang T., Xu L., Gao L., Zhao L., Liu X.H., Chang Y.Y., Liu Y.L. Paeoniflorin Attenuates Early Brain Injury through Reducing Oxidative Sress and Neuronal Apoptosis after Subarachnoid Hemorrhage in Rats. Metab. Brain Dis. 2020;35:959–970. doi:10.1007/s11011-020-00571-w. [PubMed] [CrossRef] [Google Scholar]

102. Han Y., Wang C., Li X., Liang G. Oleanolic Acid Reduces Oxidative Stress and Neuronal Apoptosis after Experimental Subarachnoid Hemorrhage by Regulating Nrf2/HO-1 Pathway. Drug Dev Res. 2022;83:680–687. doi:10.1002/ddr.21899. [PubMed] [CrossRef] [Google Scholar]

103. Gong P., Zhang W., Zou C., Han S., Tian Q., Wang J., He P., Guo Y., Li M. Andrographolide Attenuates Blood-Brain Barrier Disruption, Neuronal Apoptosis, and Oxidative Stress Through Activation of Nrf2/HO-1 Signaling Pathway in Subarachnoid Hemorrhage. Neurotox Res. 2022;40:508–519. doi:10.1007/s12640-022-00486-7. [PubMed] [CrossRef] [Google Scholar]

104. Chen T., Wang Y., Wang Y.H., Hang C.H. The Mfn1-betaIIPKC Interaction Regulates Mitochondrial Dysfunction via Sirt3 Following Experimental Subarachnoid Hemorrhage. Transl. Stroke Res. 2022;13:845–857. doi:10.1007/s12975-022-00999-5. [PubMed] [CrossRef] [Google Scholar]

105. Wu P., Li Y., Zhu S., Wang C., Dai J., Zhang G., Zheng B., Xu S., Wang L., Zhang T., et al. Mdivi-1 Alleviates Early Brain Injury after Experimental Subarachnoid Hemorrhage in Rats, Possibly via Inhibition of Drp1-Activated Mitochondrial Fission and Oxidative Stress. Neurochem. Res. 2017;42:1449–1458. doi:10.1007/s11064-017-2201-4. [PubMed] [CrossRef] [Google Scholar]

106. Shen R., Zhou J., Li G., Chen W., Zhong W., Chen Z. SS31 Attenuates Oxidative Stress and Neuronal Apoptosis in Early Brain Injury following Subarachnoid Hemorrhage Possibly by the Mitochondrial Pathway. Neurosci. Lett. 2020;717:134654. doi:10.1016/j.neulet.2019.134654. [PubMed] [CrossRef] [Google Scholar]

107. Zhang T., Wu P., Zhang J.H., Li Y., Xu S., Wang C., Wang L., Zhang G., Dai J., Zhu S., et al. Docosahexaenoic Acid Alleviates Oxidative Stress-Based Apoptosis via Improving Mitochondrial Dynamics in Early Brain Injury after Subarachnoid Hemorrhage. Cell. Mol. Neurobiol. 2018;38:1413–1423. doi:10.1007/s10571-018-0608-3. [PubMed] [CrossRef] [Google Scholar]

108. Fan L.F., He P.Y., Peng Y.C., Du Q.H., Ma Y.J., Jin J.X., Xu H.Z., Li J.R., Wang Z.J., Cao S.L., et al. Mdivi-1 Ameliorates Early Brain Injury after Subarachnoid Hemorrhage via the Suppression of Inflammation-Related Blood-Brain Barrier Disruption and Endoplasmic Reticulum Stress-Based Apoptosis. Free Radic. Biol. Med. 2017;112:336–349. doi:10.1016/j.freeradbiomed.2017.08.003. [PubMed] [CrossRef] [Google Scholar]

109. Zhang X.S., Lu Y., Tao T., Wang H., Liu G.J., Liu X.Z., Liu C., Xia D.Y., Hang C.H., Li W. Fucoxanthin Mitigates Subarachnoid Hemorrhage-Induced Oxidative Damage via Sirtuin 1-Dependent Pathway. Mol. Neurobiol. 2020;57:5286–5298. doi:10.1007/s12035-020-02095-x. [PubMed] [CrossRef] [Google Scholar]

110. Liu H., Guo W., Guo H., Zhao L., Yue L., Li X., Feng D., Luo J., Wu X., Cui W., et al. Bakuchiol Attenuates Oxidative Stress and Neuron Damage by Regulating Trx1/TXNIP and the Phosphorylation of AMPK after Subarachnoid Hemorrhage in Mice. Front. Pharmacol. 2020;11:712. doi:10.3389/fphar.2020.00712. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Zhuang K., Zuo Y.C., Sherchan P., Wang J.K., Yan X.X., Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury after Subarachnoid Hemorrhage in Rats. Front. Neurosci. 2019;13:1441. doi:10.3389/fnins.2019.01441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Zhang Y., Zhang T., Li Y., Guo Y., Liu B., Tian Y., Wu P., Shi H. Metformin Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Rats via AMPK-Dependent Mitophagy. Exp. Neurol. 2022;353:114055. doi:10.1016/j.expneurol.2022.114055. [PubMed] [CrossRef] [Google Scholar]

113. Xu W., Li T., Gao L., Zheng J., Yan J., Zhang J., Shao A. Apelin-13/APJ System Attenuates Early Brain Injury via Suppression of Endoplasmic Reticulum Stress-Associated TXNIP/NLRP3 Inflammasome Activation and Oxidative Stress in A AMPK-Dependent Manner after Subarachnoid Hemorrhage in Rats. J. Neuroinflammation. 2019;16:247. doi:10.1186/s12974-019-1620-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Han Y., Su J., Liu X., Zhao Y., Wang C., Li X. Naringin Alleviates Early Brain Injury after Experimental Subarachnoid Hemorrhage by Reducing Oxidative Stress and Inhibiting Apoptosis. Brain Res. Bull. 2017;133:42–50. doi:10.1016/j.brainresbull.2016.12.008. [PubMed] [CrossRef] [Google Scholar]

115. Fu P., Hu Q. 3,4-Dihydroxyphenylethanol Alleviates Early Brain Injury by Modulating Oxidative Stress and Akt and Nuclear Factor-KappaB Pathways in A Rat Model of Subarachnoid Hemorrhage. Exp. Ther. Med. 2016;11:1999–2004. doi:10.3892/etm.2016.3101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Oxidative Stress and Intracranial Hypertension after Aneurysmal Subarachnoid Hemorrhage (2024)

FAQs

Oxidative Stress and Intracranial Hypertension after Aneurysmal Subarachnoid Hemorrhage? ›

Oxidative damage to the lipids, proteins, and DNA can disrupt the BBB, vasoconstriction, and cytotoxic edema after SAH, leading to subsequent elevation of the intracranial pressure.

Does subarachnoid hemorrhage cause increased intracranial pressure? ›

The sudden release of blood in the subarachnoid space during hemorrhage onset can lead to a rapid increase in ICP, potentially reaching the mean arterial pressure, causing a transient cerebral circulatory arrest, and resulting in loss of consciousness [11].

What is the common complication of aneurysmal subarachnoid hemorrhage? ›

Cognitive dysfunction is a common complication of a subarachnoid haemorrhage, affecting most people to some degree. Cognitive dysfunction can take a number of forms, such as: problems with memory – memories before the haemorrhage are normally not affected, but you may have problems remembering new information or facts.

What is the most feared complication in subarachnoid hemorrhage? ›

Delayed cerebral ischemia from arterial smooth muscle contraction is the most common cause of death and disability following aneurysmal SAH. Vasospasm can lead to impaired cerebral autoregulation and may progress to cerebral ischemia and infarction.

What are the four stages of increased intracranial pressure? ›

Intracranial hypertension is classified in four forms based on the etiopathogenesis: parenchymatous intracranial hypertension with an intrinsic cerebral cause, vascular intracranial hypertension, which has its etiology in disorders of the cerebral blood circulation, meningeal intracranial hypertension and idiopathic ...

Does hemorrhage increase ICP? ›

Spontaneous intracerebral hemorrhage (ICH) and frequently associated intraventricular hemorrhage (IVH) cause structural changes that can increase intracranial pressure (ICP) and reduce cerebral perfusion pressure (CPP) (1).

Can a subarachnoid hemorrhage cause brain damage? ›

Most often, it occurs when a weak area in a blood vessel (aneurysm) on the surface of the brain bursts and leaks. The blood then builds up around the brain and inside the skull. This increases pressure on the brain. It can cause brain cell damage, life-long problems, and disabilities.

What is the most important determinant of outcome after subarachnoid hemorrhage? ›

Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH.

What is the outcome of aneurysmal subarachnoid hemorrhage? ›

Spontaneous aneurysmal subarachnoid hemorrhage (aSAH) is a severe type of hemorrhagic stroke with a mortality rate up to 35%. Approximately one-third of the survivors remain severely disabled and functionally dependent.

Can you fully recover from a subarachnoid hemorrhage? ›

For those who survive a subarachnoid hemorrhage, recovery is slow. Most people do not recover complete functioning within months of a subarachnoid hemorrhage. Up to 50% of people who survive subarachnoid hemorrhage will have neurological disabilities that last much longer or become permanent.

What is the life expectancy after a subarachnoid hemorrhage? ›

Life expectancy after a subarachnoid hemorrhage (SAH) varies based on its severity and how quickly it's diagnosed and treated. In general, the one-year mortality rate of untreated SAH is up to 65%, meaning up to 65% of people who had an SAH that wasn't treated died within one year of the episode.

What are the after effects of a subarachnoid hemorrhage? ›

Common problems
  • Extreme tiredness. During the first few months after a subarachnoid haemorrhage, it's normal to feel extremely tired. ...
  • Problems sleeping. ...
  • Headaches. ...
  • Unusual sensations. ...
  • Loss of feeling or movement. ...
  • Changes in senses. ...
  • Vision.

Is a subarachnoid hemorrhage the worst headache of life? ›

Thunderclap headache (TCH), so named because it strikes suddenly, like a clap of thunder, is associated with life-threatening aneurysmal subarachnoid hemorrhage (aSAH). Hemorrhagic stroke should always be suspected with signs and symptoms of TCH. The author experienced a TCH, aSAH, craniotomy, and neurointensive care.

What is one of the earliest signs of increased intracranial pressure? ›

Clinical suspicion for intracranial hypertension should be raised if a patient presents with the following signs and symptoms: headaches, vomiting, and altered mental status varying from drowsiness to coma.

Can stress raise intracranial pressure? ›

Oxidative stress is an important pathophysiological mechanism that causes intracranial hypertension, rendering oxidative stress as a potential target for the treatment of intracranial hypertension.

What are 3 cardinal signs of raised intracranial pressure? ›

Call your healthcare provider or 911 if you think you may be having symptoms of increased ICP, such as: Severe headache. Blurred vision. Feeling less alert than usual.

What causes an increase in intracranial pressure? ›

Increased ICP can result from bleeding in the brain, a tumor, stroke, aneurysm, high blood pressure, or brain infection. Treatment focuses on lowering increased intracranial pressure around the brain. Increased ICP has serious complications, including long-term (permanent) brain damage and death.

What is the difference between intracranial hemorrhage and subarachnoid hemorrhage? ›

Intraparenchymal hemorrhage (IPH; Figure 1) refers to nontraumatic bleeding into the brain parenchyma. (Intracerebral hemorrhage, often abbreviated ICH, is used more often in the clinical literature.) Subarachnoid hemorrhage (SAH) refers to bleeding into the space between the pia and the arachnoid membranes.

What is the hallmark symptom of a subarachnoid hemorrhage? ›

The hallmark symptom of a subarachnoid hemorrhage is the sudden onset of a severe headache, often accompanied with nausea, vomiting, and a loss of consciousness.

Does subarachnoid hemorrhage cause hypertension? ›

The main forms of hemorrhagic stroke, intracerebral hemorrhage (ICH) and aneurysmal subarachnoid hemorrhage (SAH), are often complicated by elevated blood pressure (BP),1,2 which in turn increases the likelihood for ongoing and recurrent hemorrhage,3,4 and death and disability.

Top Articles
Latest Posts
Article information

Author: Madonna Wisozk

Last Updated:

Views: 5520

Rating: 4.8 / 5 (68 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Madonna Wisozk

Birthday: 2001-02-23

Address: 656 Gerhold Summit, Sidneyberg, FL 78179-2512

Phone: +6742282696652

Job: Customer Banking Liaison

Hobby: Flower arranging, Yo-yoing, Tai chi, Rowing, Macrame, Urban exploration, Knife making

Introduction: My name is Madonna Wisozk, I am a attractive, healthy, thoughtful, faithful, open, vivacious, zany person who loves writing and wants to share my knowledge and understanding with you.