Can 3D Printing Use Metal? (Everything You Need To Know) (2024)

Back to FAQs How Long Does 3D Printing Take? Can 3D Printing Use Metal? (Everything You Need To Know) What are the Pros and Cons of 3D Printing?

Yes, it is possible to 3D print items from metal. There are several manufacturing processes which fall under the heading of metal additive manufacturing, but this article concentrates on those which use layers of metal powder to build up and form complex structures that may be difficult to create with other techniques.

The metal 3D printing process involves sintering or melting metal powders directly, or combining them with a second material to allow delivery through a nozzle. It is used for both rapid prototyping and finished production parts for aerospace, mechanical engineering, tooling and more.

Contents

Click the links below to skip to the section in the guide:

  • What metals can be used in 3d printing?
  • What metals cannot be 3d printed?
  • What processes can be used to 3D print metals?
  • Other techniques
  • Advantages and disadvantages
  • What is the purpose of 3D metal printing?
  • Is it expensive?
  • Conclusion

TWI

TWI provides support to our Industrial Members in a range of areas includingadditive manufacturing(in a range of materials),sintering, and theperformance of metals during 3D printing.

TWI is an Industrial Membership based organisation. TWI's experts can provide your company with an extension to your own resources as well as engineering consultancy services. Our experts are dedicated to helping industry improve safety, quality, efficiency and profitability in all aspects of materials joining technology. Industrial Membership of TWI currently extends to over 600 companies worldwide, embracing all industrial sectors.

You can find out more by contacting us, below:

contactus@twi.co.uk

What Metals can be used in 3D Printing?

A wide range of different metals can be used in powder form to manufacture parts through 3D printing. Titanium, steel, stainless steel, aluminium, copper, cobalt chrome, titanium, tungsten and nickel-based alloys are all available in powdered form for 3D printing, as are precious metals like gold, platinum, palladium and silver.

These different metals offer various properties, making them suitable for a range of applications. For example, stainless steel provides excellent corrosion resistance, making it ideal for printing pipes, valves and steam turbine parts.

What Metals cannot be 3D Printed?

Theoretically, any metal can be used for 3D printing if it is available as a suitable powder. However, materials that burn rather than melt at high temperatures cannot be processed safely by sintering or melting, but can be used when extruded through a nozzle for 3D printing. Wood, cloth and paper cannot be 3D printed using these processes.

It is also possible to use sintering (forming inside a mould at high temperature and extremely high pressure) to create solid items from metal powders and, in the case of those metals with very high melting points, sintering is the only reliable method to manufacture items from these materials.

What 3D Printing Process can be used to 3D Print Metals?

As hinted above, there are several technologies for 3D printing metals. Powder bed fusion techniques, which include Direct Metal Laser Sintering (DMLS), SLM (Selective Laser Melting) and EBM (Electron Beam Melting), are the more widely used techniques for metal additive manufacturing:

Direct Metal Laser Sintering (DMLS)

This commonly used method uses a laser to sinter metal powder layer-by-layer to form an object. The process does not actually melt the metal and is used for prototyping and manufacturing finished parts including medical devices and instruments.

Selective Laser Melting (SLM)

This process involves using a laser to melt the material where required within a layer of powder in an inert gas environment. This proceeds layer by layer for creating objects with similar parameters to those produced with casting. SLM is often used to manufacture parts from aluminium and titanium, including those for the medical, automotive and aerospace industries.

Electron Beam Melting (EBM)

This process is similar to SLM, except an electron beam is used to melt the material rather than a laser. EBM is perceived as being faster and more precise than SLM and is often used to manufacture items from cobalt and titanium. EBM is widely used by the aerospace industry for items including engine components.

Other Techniques:

There are other techniques that can or have been used for 3D printing metals, although these are not as widely used as DMLS, SLM or EBM:

Laser Metal Deposition (LMD)

LMD is used in the aerospace, automotive and medical industries, creating objects by depositing heated metal on a metallic substrate layer-by-layer. LMD allows different materials to be used to build an object and is faster than other methods

Selective Laser Sintering (SLS)

Similar to DMLS, this process also uses a laser to sinter powdered materials. It has been used to manufacture items from a wide range of materials, including metal. However, these days it is mostly used for sintering plastics, such as polyamide and nylon

Binder Jetting

This process uses a special liquid to bind the powder material and is less expensive than DMLS, SLM or EBM. The accuracy and strength afforded by this process are not perfect and post-processing is often required. Hot isostatic pressing can be used to improve the strength and solidity of the finished object, but this increases the costs. Binder jetting is typically used for the manufacture of large scale and complex prototypes

Metal Injection Moulding

This combination of injection moulding and 3D printing is widely used for making small components in industries including medical and defence. The process works by mixing metal powder with thermoplastic and wax binders. This mix is heated until the binder melts and covers the powder, which is then granulated into pellets. These pellets are heated and injected into a cavity to form the object before the binder material is removed, usually via solvent extraction. The part is then sintered, evaporating any remaining binder and compressing the object into a dense solid. The object can then be finished as required.

What are the Advantages and Disadvantages of 3D Metal Printing?

There are a number of benefits and drawbacks associated with 3D metal printing, as follows:

Advantages

  1. Easy to manufacture items with complex shapes faster than traditional manufacturing methods
  2. Cheaper than many conventional manufacturing methods for some parts
  3. Capable of producing precise and highly detailed objects
  4. Because details can be included at time of assembly, it can save time and money compared to more traditional methods of manufacture
  5. Complicated forms can be created to create lighter objects without sacrificing strength, making 3D metal printing ideal for automotive, aerospace and space applications
  6. Very little material wastage
  7. Multiple parts of a complicated assembly can be combined into a single component, reducing part count and assembly costs

Disadvantages

  1. Slow to produce parts designed for traditional manufacturing, making high volume production uncompetitive on cost alone
  2. Powdered metal materials are more expensive than non-powdered metals (e.g. billet or bar)
  3. Metal 3D printers can be expensive
  4. Surface finishing and post-processing of 3D printed parts may be required
  5. Offers lower precision and tolerance than specialised CNC machining
  6. Heat treatment may be needed to reduce inner stresses in a 3D printed item, or achieve maximum strength in the metal
  7. Design of 3D metal parts can be complex and require the services of professional CAD engineers
  8. The size of parts is limited by the build volume of the 3D printer

What is the Purpose of 3D Metal Printing?

The advantages and disadvantages of the process provide an insight into the purpose of 3D printing in metal, showing that it is well suited to manufacturing relatively small, complex parts, including prototypes. It can also facilitate tooling for conventional manufacturing technologies, lowering costs and reducing lead times.

By combining the flexibility of 3D printing with the mechanical properties of metal, this technology has found uses across industry, from inserts with cooling channels through lightweight structures for the aerospace industry, to complex parts to be used in highly demanding environments. Typical uses include fully functional prototyping, creating production tools, tooling for moulds or inserts, housings, ductwork, heat exchangers and heatsinks.

Of course, different metals lend themselves to the printing of different objects, for example:

  • Stainless Steel:Perfect for objects that will come into contact with corrosive liquids, water or steam, due to the superb corrosion resistance
  • Bronze:Pump impellors and marine propellers, fixtures and more decorative items, such as vases
  • Gold:Can be used to print jewellery
  • Nickel:Can be used to print turbine engine parts or even coins
  • Aluminum:Ideal for metal objects, especially where lightweighting is required, such as with airframe parts
  • Titanium:Capable of producing very strong, accurate parts such as medical implants (e.g. hip joints) and other solid fixtures and objects

Is 3D Printing Metal Expensive?

Different 3D printing techniques use different solutions for industry with different materials and complexity, meaning that the cost of 3D printing in metal can vary substantially. However, most of the cost comes from the 3D printing machines, which can be a large proportion of overall costs for a production run, alongside labour, materials, preparation and post-processing. The requirement for high-quality powdered materials also adds to the cost of 3D metal printing as they are more expensive than non-powdered metals in the same quantities.

As mentioned, printer prices can be high, with costs of several or even hundreds of thousands of pounds, although these prices are comparable to a high quality CNC machine tool of a similar size. As technology and the market size improves, it is expected that the price of 3D printing machines will decrease.

As well as the cost of materials and the printer, there are design costs for the objects to be created. This can involve the need to buy specialist software or hire the services of CAD engineers with specialist knowledge of 3D printing. There are, of course, other labour costs for the operation and maintenance of the machines.

Finally, there are costs associated with post processing of printed parts. This can include cleaning, heat treatment, the removal of support structures and applying coatings to the surface.

Conclusion

3D printing with metal, or additive manufacturing, allows for parts to be made with almost the same strength as regular metal objects.

While it can be expensive and is not well-suited to replacing conventional manufacturing for high volume production of standard items, it is ideal for making smaller, complex items. 3D printing with metals also assists with lightweighting for parts used in industries including aerospace and automotive.

Related Frequently Asked Questions (FAQs)

Can 3D Printing Use Metal? (Everything You Need To Know) (2024)

FAQs

Can 3D Printing Use Metal? (Everything You Need To Know)? ›

What Metals cannot be 3D Printed? Theoretically, any metal can be used for 3D printing if it is available as a suitable powder. However, materials that burn rather than melt at high temperatures cannot be processed safely by sintering or melting, but can be used when extruded through a nozzle for 3D printing.

Is it possible to 3D print with metal? ›

One of the most common metal 3D printing methods is the Powder Bed or Powder Bed Fusion process. The various types of Powder Bed Fusion typically use heat or light energy, in the form of a laser or electron beam, to fuse or melt metal powder material together - and involve spreading the material over previous layers.

What are the disadvantages of 3D metal printing? ›

Build times for 3D metal printing are much longer compared to most traditional manufacturing methods. It also typically requires several builds to fine tune a part's design for mass production through 3D metal printing. Materials for metal additive manufacturing can also be a limiting factor for manufacturers.

Which material is not suitable for 3D printing? ›

3D printing typically uses thermoplastics, resins, metals, ceramics, or composites, but not all materials are compatible with all printing methods and machines. For example, some materials may require high temperatures, pressures, or lasers to melt or fuse, which may not be suitable for some printers or environments.

How precise is metal 3D printing? ›

The dimensional accuracy that a metal 3D printer can achieve is approximately ± 0.1 mm.

What cannot be 3D printed? ›

However, materials that burn rather than melt at high temperatures cannot be processed safely by sintering or melting, but can be used when extruded through a nozzle for 3D printing. Wood, cloth and paper cannot be 3D printed using these processes.

How much does it cost to 3D print metal? ›

How much does metal 3d printing really cost? You're looking somewhere between $15 per piece up to $800 for larger models. Similar to the cost of 3d printing service, metal 3d printing depends on factors such as the volume of your 3d model, complexity and the type of finishing that you use, in this case metal.

Are metal 3D printers worth it? ›

Metal 3D printing isn't the most cost effective manufacturing method for all volumes -- at high volumes, most other manufacturing processes are significantly more affordable. However, for a significant slice of low to medium volume production, metal 3D printing can be the most affordable way to make parts.

Is 3D metal printing cheaper than manufacturing? ›

Casting would be the cheaper option when producing many parts. If your order size is smaller and has more complex requirements, then metal 3D printing would be the more cost-effective route.

What are the 7 issues to look out for in metal 3D printing? ›

(Image courtesy of Wikipedia.) In the metal 3D printing process, a number of issues can occur that machine operators attempt to avoid. These include porosity, residual stress, density, warping, cracking and surface finish.

What am I not allowed to 3D print? ›

Patented Objects: Having a patent on an invention or innovation means no one else can create, use, or sell a product without the patent holder's permission. Therefore, 3D printing of a patented object is illegal, and the patent holder could sue for patent infringement.

How much does a 3D printer cost? ›

DIY printers 3D printer kits start around $200, hobbyist printers range from $500-$1,500. Professional FDM 3D printers start around $2,500, and large-format professional FDM printers start around $4,000.

What is the largest thing ever 3D printed? ›

UMaine team received one world record for building the world's largest 3D-printed boat, another for the world's largest prototype polymer 3D printer and one for the largest solid 3D printed object. Dubbed '3Dirigo', world's largest 3D-printed boat is 25 feet in length and it weighs 5,000 pounds.

Can you 3D print metal at home? ›

The best part about this material is that it can be printed on virtually any desktop 3D printer, like the BCN3D Sigmax R19, Ultimaker S5, Pulse, or any 3D printer with the right upgrades. Easily produce functional metal parts straight from your desktop 3D printer.

Is metal 3D printing the future? ›

Metal 3D printing is increasingly being adopted for increased volume and part sizes in the production of complex parts and components such as combustion chambers. Evolving equipment and techniques are increasing reliability in large-scale manufacturing operations.

Who is the leader in metal 3D printing? ›

EOS is the leading technology provider worldwide for industrial 3D printing of metals and plastics.

Is 3D printed metal as strong as cast? ›

In contrast, 3D printed stainless steel uses additive manufacturing (AM) technology to create parts in layers that can be customized to fit any need. The durability of 3D printed materials is also vastly different than cast ones. Due to the way they're made, AM parts have an average hardness of Rockwell C-60 or higher.

Can Ender 3D printer print metal? ›

So, in theory, you can print metal filament on machines under $200, like an Ender 3 or Anet A8, but be sure to follow the design guidelines from your filament maker and your printer manufacturer.

Can you get metal 3D printers? ›

From the company that revolutionised carbon fibre, Kevlar and fibreglass 3D printing comes a new breakthrough in metal 3D printing. The Metal X is a metal 3D printer that utilises a process called Metal FFF to print parts.

Why is metal good for 3D printing? ›

Compared to subtractive CNC machines, it's more adept at curved, natural shapes and intricate geometries. As a result, complex parts are cheaper, easier, and faster to produce with a metal 3D printer. Metal 3D printers are uniquely suited to fabricate complex parts.

Top Articles
Latest Posts
Article information

Author: Terence Hammes MD

Last Updated:

Views: 6065

Rating: 4.9 / 5 (49 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Terence Hammes MD

Birthday: 1992-04-11

Address: Suite 408 9446 Mercy Mews, West Roxie, CT 04904

Phone: +50312511349175

Job: Product Consulting Liaison

Hobby: Jogging, Motor sports, Nordic skating, Jigsaw puzzles, Bird watching, Nordic skating, Sculpting

Introduction: My name is Terence Hammes MD, I am a inexpensive, energetic, jolly, faithful, cheerful, proud, rich person who loves writing and wants to share my knowledge and understanding with you.